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Abstract: A real-time determination of battery parameters is challenging because batteries are
non-linear, time-varying systems. The transient behaviour of lithium-ion batteries is modelled by
a Thevenin-equivalent circuit with two time constants characterising activation and concentration
polarization. An experimental approach is proposed for directly determining battery parameters
as a function of physical quantities. The model’s parameters are a function of the state of charge
and of the discharge rate. These can be expressed by regression equations in the model to derive
a continuous-discrete extended Kalman estimator of the state of charge and of other parameters.
This technique is based on numerical integration of the ordinary differential equations to predict
the state of the stochastic dynamic system and the corresponding error covariance matrix. Then a
standard correction step of the extended Kalman filter (EKF) is applied to increase the accuracy of
estimated parameters. Simulations resulting from this proposed estimator model were compared
with experimental results under a variety of operating scenarios—analysis of the results demonstrate
the accuracy of the estimator for correctly identifying battery parameters.

Keywords: battery modelling; continuous-discrete extended Kalman filter; state of charge; battery
parameters; estimation

1. Introduction

The crisis in Syria has deprived many of continuous and permanent access to electrical networks,
so daily needs must be met through electrical energy storage, such as lead-acid and lithium-ion
batteries. Given their importance, we have investigated means to maximize efficient monitoring,
operation and management of battery resources.

To carry out this work, we chose lithium-ion technology. It is currently widely used in Syria to
power portable electronics, such as laptop computers charged via solar bags. Moreover, compared
with older battery technologies, lithium-ion batteries offer relatively high voltage, high specific energy,
high specific power, no memory effect, and low self-discharge rates during storage.

An accurate model of battery dynamics should take into account multiple coefficients, such as
open-circuit voltage, discharge rate, power, state of charge (SOC) and temperature.

However, it is difficult to determine or estimate battery parameters, because they are
interdependent and vary over time and use. Many battery models are used to represent the battery
behaviour. The most commonly used models can be divided into two categories: the electrochemical
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models and the electrical equivalent circuit models. The electrochemical models utilize a set of coupled
non-linear differential equations to describe the pertinent transport, thermodynamic, and kinetic
phenomena. The dynamical behaviour of a lithium-ion battery can be simulated correctly using the
Warburg diffusion impedance with complex electrical equivalent circuits [1–3]. However, estimating
the parameters of this sophisticated model usually requires an electrochemical impedance spectrometry
(EIS). EIS data are analysed by fitting to a complex electrical equivalent circuit model for different
values of the SOC and the temperature.

A big capacitor with series resistance can be selected to calculate dynamic terminal voltage of
the battery. Later, a model with two capacitors in parallel was developed consisting of a double layer
capacitor, a bulk capacitor, a charge transfer resistance and a terminal resistance [4]. Recently, the dual
polarization model has been commonly used [5–9].

There are a lot of SOC estimation methods. The commonly used methods can be generally
classified into four categories, namely, the direct discharge method, the Ampere-Hour counting method,
the voltage/impedance-based method, and model-based filter methods [8,10–12]. The extended
Kalman filter (EKF) is widely used for estimating the SOC and other battery parameters related to the
SOC [13–15].

This paper proposes an experimental approach for identifying battery parameters. An EKF
estimator was developed based on the Thevenin equivalent battery circuit. This recursive method
can be used in real time to eliminate measurement and process noise. This hybrid approach, which is
applied here to a continuous system with discrete measurements, is particularly suitable for battery
systems [16–18].

2. Dynamical Model of Battery

In order to describe the dynamic behaviour of a battery, we use the Thevenin equivalent circuit
(dual polarization) shown in Figure 1 [19–21]. This battery equivalent circuit consists of two time
constants τ1 = R1C1 and τ2 = R2C2. The constant τ1 characterizes the activation polarization while
the constant τ2 characterizes the concentration polarization.
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The elements of the battery equivalent circuit depicted in Figure 1 are as follows: Voc is the
open-circuit voltage, R0 is the ohmic resistance of the battery's collectors and electrodes, ibat is the
charge/discharge current and U represents the terminal voltage of the battery cell. As shown in
Figure 1, the current ibat flowing through resistance R0 can be expressed by the following equation:

ibat = iR1 + iC1 =
u1

R1
+ C1 ·

du1

dt
(1)

Equation (1) can be rewritten as:

R1 · ibat = u1 + R1 · C1 ·
du1

dt
(2)
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where u1 is the voltage drop due to activation polarization. Similarly, we can write the following
equation in the second circuit R2C2,

R2 · ibat = u2 + R2 · C2 ·
du2

dt
(3)

where u2 is the voltage drop due to mass transport (concentration polarization).
Therefore, the terminal voltage U of the cell is determined by the open-circuit voltage Voc and the

different drops of voltage as given by Equation (4).

U = Voc + u1 + u2 + R0 · ibat (4)

3. Studied Battery and Experimental Device

In order to measure the parameters of the battery, a single cell of Li-ion battery (2.15 Ah, 3.7 V) is
used [22]. Appendix A provides detailed parameters of the battery cell. Figure 2 shows a photo of the
charge/discharge experimental device which we programmed using LabView.
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edit (11) start (12) exit (13) export.

4. Determining Open-Circuit Voltage as a Function of SOC

Accuracy of the Thevenin circuit relies on diverse conditions, especially the SOC. To estimate the
SOC during the charging/discharging of a battery, the Ampere-Hour counting (AHC) technique is used.
It is the most common technique for calculating the SOC. The SOC variation during charge/discharge
can be calculated as [7,23]:

d
dt

SOC = η · ibat − I0

Q
(5)

where, Q is the initial ampere-hour of battery, I0 is the current consumed by the parasitic reactions, η is
the Coulombic efficiency, which is a function of the current and the temperature. Coulombic efficiency
is the ratio of the Ampere-hours removed from a battery during discharge to the Ampere-hours
required to restore the initial capacity [24]. Before each discharge test, the battery is fully charged for
more than 24 hours with the floating technique. This allows us to neglect the losses due to parasitic
reactions [25].
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The first parameter in the model shown in Figure 1 is the open-circuit voltage Voc. The Voc is
usually measured at various SOC points as the steady-state open circuit terminal voltage. For each
SOC point, this measurement can take many days, but in our research, we used a quick measurement
technique. To measure Voc at various SOC points, the battery was discharged by injecting successive
current pulses. The battery cell was discharged with a pulse current of 0.8 A (0.37 C) from full charge
(SOC = 100%) to cut-off voltage (SOC = 0%) [22]. C-rate is the discharge rate of the battery relative to
its capacity. This current pulse has 480 s on-time and 600 s off-time. Figure 3 shows the pulse discharge
current and the battery terminal voltage. The experimental data was obtained at a room temperature
of 25 ◦C.
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It was considered that each pulse current discharged the battery by 10%. The open-circuit voltage
Voc was measured at equilibrium potential. The points in Figure 4 show the Voc versus SOC. The
relation between the Voc and the SOC is non-linear. The curve is steep at the beginning (for SOC lower
than 20%) and then linear [26–28].
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Figure 4. Experimental and fitting result of Voc versus state of charge (SOC).

It is important to include the variation of Voc as a function of SOC in the whole battery model. The
experimental value is interpolated by a fitting technique (using software FindGraph). The resulting
fitting function is given by:

VOC (SOC) = av · exp(bv · SOC) + dv · exp(cv · SOC) (6)

Table 1 represents the relative fitting errors for battery parameters.
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Table 1. Fitting error for battery parameters.

Parameter Error (Root Mean Square)

∆R1 1.5%
∆C1 2.0%
∆R2 1.3%
∆C2 2.3%
∆Voc 1.2%

5. Identification of Model Parameters as a Function of SOC

Figure 5 shows the typical voltage response of a battery. The voltage drop may be divided into
two parts. The first (∆V1) is a vertical straight drop largely dependent on the battery’s ohmic resistance
R0. It can be estimated by [29]:

R0 =
∆V1

ibat
(7)
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Figure 5. Single pulse of voltage response.

The second (∆V2) is the voltage drop based on resistances R1 and R2. It is experimentally difficult
to measure the time constants for activation and concentration separately. Moreover, some simplified
hypotheses may lead to important errors. As the experimental results show, resistance R0 varies
slightly with SOC. This concurs with publications [8,29,30] showing that other parameters of the model
vary non-linearly versus SOC.

In a single pulse, the value of the current ibat is either constant or zero. Therefore, the solutions
for Equations (2) and (3) will be as follows:

u1 = ibat · R1 · (1 − exp(−t/τ1)) (8a)

u2 = ibat · R2 · (1 − exp(−t/τ2)) (8b)

This means that during discharge, each voltage can be represented by an exponential. We suggest
using regression analysis to fit the voltage experimental data with two exponentials. Based on the
experimental data, a regression analysis is conducted at each SOC separately, and for different pulse
currents (0.8, 1.2 and 1.5 A; 0.37, 0.56 and 0.7 C). Through this approach, the elements of the battery
equivalent circuit can be determined.

This approach is repeated for each pulse where it is supposed that the elements R1, C1, R2 and C2

are independent of SOC only for the related pulse. Figure 6 represents the values of the resistance R1

and the capacitance C1 as a function of SOC for three values of the discharge current.
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The resistance R1 decreases roughly with the increase of SOC. Using fitting, the average value of
R1 can be expressed by an exponential function as follows:

R1(SOC) = ar1 + br1 · exp(cr1 · SOC) (9a)

C1(SOC) = ac1 · SOC2 + bc1 · SOC + cc1 (9b)

A polynomial is selected to fit the experimental values of the capacitance C1.
The values of the resistance R2 and of the capacitance C2 as a function of SOC are shown in

Figure 7 for different discharge currents. It can be seen where SOC is less than 20%, resistance R2

is higher.
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Similarly, we found that the both parameters R2 and C2 can be expressed as:

R2(SOC) = ar2 + br2 · exp(cr2 · SOC) (10a)

C2(SOC) = ac2 · SOC4 + bc2 · SOC3 + cc2 · SOC2 + dc2 · SOC + ec2 (10b)

where SOC is at or above 30%, variation is low for resistances and high for capacitances.
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6. Determining the Battery Coulombic Efficiency

The battery is discharged at various constant currents in the range of 0.6–3 A (0.2–1.4 C). The
experimental results are shown in Figure 8. The discharge rate of the battery substantially affects the
voltage curve—as it increases, the voltage curve shifts downward significantly. For a high discharge
current (3 A), the discharge curve is deformed and the battery capacity decreases markedly.
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The battery Coulombic efficiency will decrease as the discharge rate increases, as shown in
Figure 8b. There is an approximately linear relationship between the discharge current and the
Coulombic efficiency. As can be noticed in Figure 8, the effect of discharge rate on useful battery
capacity is clear. It is still lower in Li-ion batteries than in lead acid batteries, however, due to the very
fast redox reactions in Li-ion batteries [31].

Since phenomena in battery systems are influenced by temperature, the model adjusts for
Coulombic efficiency variation [22,24].

7. Comparison between Simulation and Experimental Results

Using the previous equations, an extended battery model (EBM) was built with the
MATLAB/SIMULINK environment. To compare the experimental and simulated results, several
tests were carried out using pulse discharge currents. The results are as follows:

• Pulse discharge current of 0.8 A (presented in Figure 3): Figure 9a shows the comparison between
the simulation and the experimental voltages. Figure 9b illustrates the small size of the simulation
error, hardly reaching 0.06 V and remaining at less than 1% virtually throughout the test.

• Pulse discharge current of 1 A (0.47 C) (180 s on-time and 60 s off-time): Figure 10a overlays the
simulated voltage and the experimental voltage curves, while Figure 10b illustrates the small
error rate.

• Pulse discharge current of 1.5 A (0.7 C) (480 s on-time and 600 s off-time): The comparison between
the simulation and the experimental voltages is represented in Figure 11a. It can be observed
in Figure 11b that the error rate, while still low, is slightly higher at this higher pulse discharge
current, especially as the battery reaches full discharge.

The previously proposed model was used to simulate the dynamic characteristics of the lithium
battery. The model’s relative accuracy was validated across a variety of voltage profiles. As the
discharge current increased, however, the EBM error increased slightly. And as the battery approached
full discharge, an important error emerged. This error can be explained by the sharp open-circuit
voltage drop that slightly influences battery runtime. The proposed EBM model is also compared with
the Erdinc model [6] on Figures 9–11. These Figures clearly show that since it considers that the battery
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parameters slightly vary with SOC, the Erdinc model produces simulation results that are farther from
the experimental results than the EBM model.

We will now examine additional steps to estimate the parameters of a real battery in real time.
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8. Estimating Battery Parameters Using an Extended Kalman Filter

The Ampere Hour counting (AHC) technique used for estimating SOC can be accurate, but it
can accumulate errors with time. Its accuracy depends very much on determining initial SOC, and
it is subject to measurement noise [32,33]. To improve accuracy, an extended Kalman filter (EKF) is
used. It is a nonlinear optimum state estimation method based on a continuous-time model and on
discrete-time measurements. A continuous-discrete extended Kalman estimator of the lithium-ion
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battery is derived from the model previously built to determine the SOC and other parameters of a
battery with less error.

u1, u2, SOC, 1/τ1, 1/C1, 1/τ2, 1/C2 and R0 are chosen as state-variables: x1 = u1,
x2 = u2, x3 = SOC, x4 = 1/τ1, x5 = 1/C1, x6 = 1/τ2, x7 = 1/C2, x8 = R0. We have chosen
this set of parameters because it simplifies the extended Kalman filter estimator. From Thevenin circuit
equations of Figure 1 and Equation (5) (see Appendix B), we can write the state equations as follows:

.
x1 = −x4 · x1 + x5 · ibat (11a)

.
x2 = −x6 · x2 + x7 · ibat (11b)

.
x3 = η(ibat) ·

1
Q

· ibat (11c)

Determination of battery parameters as a function of SOC allows us to develop the extended
Kalman filter observer to identify parameters in real-time. The derivation of time equations for the
other state-variables is summarised below.

The time equation for x4 can be developed from Equation (12a).

.
x4 =

dx4

dx3
· .

x3 (12a)

Equation (12a) can be rewritten replacing x4 by 1/τ1 as:

.
x4 =

−
dτ1
dx3

(x3)

τ1(x3)
2

 · η · ibat
Q

= −x2
4 ·

dτ1

dx3
(x3) ·

η · ibat
Q

(12b)

The derivative of the constant τ1 with respect to x3 can be calculated as:

dτ1

dx3
(x3) =

dR1

dx3
(x3) · C1(x3) + R1(x3) ·

dC1

dx3
(x3) (12c)

Then, Equation (12b) can be rewritten as:

.
x4 = −x2

4 ·
(

dR1

dx3
(x3) ·

1
x5

+ R1(x3) ·
dC1

dx3
(x3)

)
· η · ibat

Q
(12d)

The resistance R1 is replaced as:

R1(x3) =
x5

x4
(12e)

Finally, variable x4 can be expressed as follows:

.
x4 = −x2

4 ·
(

dR1

dx3
(x3) ·

1
x5

+
x5

x4
· dC1

dx3
(x3)

)
· η · ibat

Q
(12f)

Similarly, the time equation for x5 can developed as follows:

.
x5 =

dx5

dx3
· .

x3 =

−
dC1
dx3

(x3)

C1(x3)
2

 · η · ibat
Q

= −x2
5 ·

dC1

dx3
(x3) ·

η · ibat
Q

(13)

Likewise, we can compute variables x6 and x7 in the same manner.

.
x6 = −x2

6 ·
(

dR2

dx3
(x3) ·

1
x7

+
x7

x6
· dC2

dx3
(x3)

)
· η · ibat

Q
(14)
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.
x7 = −x2

7 ·
dC2

dx3
(x3) ·

η · ibat
Q

(15)

The time derivative of variable x8 is assumed to be zero.

dx8

dt
= 0 (16)

In such a case, we can use a continuous-discrete extended Kalman filter (CD-EKF). The system of
interest is a continuous-time dynamic system with discrete-time measurements given by [34–36]:

.
x = f (x(t), ibat(t)) + ν(t) (17a)

U(n · Ts) = h(x(n · Ts), ibat(n · Ts)) + wn (17b)

where v(t) is the unmeasured “process noise” which is assumed to be a continuous-time Gaussian
zero-mean white noise of covariance matrix q; wn is the measurement noise which is assumed
to be a discrete-time Gaussian zero-mean white noise of covariance matrix R; and xn = x(nTs),
where n is the sampling number; and Ts is the sampling period. The U and ibat are the output and
input measurements.

The Kalman filter mainly involves two steps: prediction and measurement update. The predicted
state x and its covariance matrix P is calculated by solving ordinary differential equations (ODE) in
the form Equation (15) [37]:

.
x̂ = f (x̂(t), ibat(t)) (18a)

.
P(x̂(t)) = F(x̂(t)) · P(t) + P(t).F(x̂(t))T + q (18b)

The dynamic matrix F (the Jacobian matrix of partial derivatives of function f ) can be computed:

F(x̂(t)) =
∂ f
∂x

(x̂(t), ibat(t)) =



F11 0 0 F14 F15 0 0 0
0 F22 0 0 0 F26 F27 0
0 0 0 0 0 0 0 0
0 0 F43 F44 F45 0 0 0
0 0 F53 0 F55 0 0 0
0 0 F63 0 0 F66 F67 0
0 0 F73 0 0 0 F77 0
0 0 0 0 0 0 0 0


(19)

where,
F11 = −x4, F14 = −x1, F15 = ibat, F22 = −x6, F26 = −x2, F27 = ibat (20a)

F43 = x2
4 ·
(

2 × x4 ·
(

dτ1

dx3
(x3)

)2
− d2τ1

dx2
3
(x3)

)
· η · ibat

Q
(20b)

F44 = −2 × x4 ·
dτ1

dx3
(x3) ·

η · ibat
Q

(20c)

F45 = x4 ·
(

x4

x2
5
· dR1

dx3
(x3)−

dC1

dx3
(x3)

)
· η · ibat

Q
(20d)

F53 = x2
5 ·
(

2 × x5 ·
(

dC1

dx3
(x3)

)2
− d2C1

dx2
3
(x3)

)
· η · ibat

Q
(20e)

F55 = −2 × x5 ·
dC1

dx3
(x3) ·

η · ibat
Q

(20f)
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F63 = x2
6 ·
(

2 × x6 ·
(

dτ2

dx3
(x3)

)2
− d2τ2

dx2
3
(x3)

)
· η · ibat

Q
(20g)

F66 = −2 × x6 ·
dτ2

dx3
(x3) ·

η · ibat
Q

(20h)

F67 = x6 ·
(

x6

x2
7
· dR2

dx3
(x3)−

dC2

dx3
(x3)

)
· η · ibat

Q
(20i)

F73 = x2
7 ·
(

2 × x7 ·
(

dC2

dx3
(x3)

)2
− d2C2

dx2
3
(x3)

)
· η · ibat

Q
(20j)

F77 = −2 × x7 ·
dC2

dx3
(x3) ·

η · ibat
Q

(20k)

The initial value of error matrix covariance P0 and q are given by:

P0 =



P110 0 0 0 0 0 0 0
0 P220 0 0 0 0 0 0
0 0 P330 0 0 0 0 0
0 0 0 P440 0 0 0 0
0 0 0 0 P550 0 0 0
0 0 0 0 0 P660 0 0
0 0 0 0 0 0 P770 0
0 0 0 0 0 0 0 P880


q =



q1 0 0 0 0 0 0 0
0 q2 0 0 0 0 0 0
0 0 q3 0 0 0 0 0
0 0 0 q4 0 0 0 0
0 0 0 0 q5 0 0 0
0 0 0 0 0 q6 0 0
0 0 0 0 0 0 q7 0
0 0 0 0 0 0 0 q8


(21)

The values of these matrices are provided in Appendix A. The covariance matrix q was computed
through manual testing in MATLAB.

The two Equations (18a) and (18b) are solved simultaneously with the nonlinear ODE solver [38].
Equation (18b) is vectorised. Here, we implanted the filter (CD-EKF) in MATLAB with ODE45
Dormand-Prince variable-step differential equation solver because it implements the Runge-Kutta
pair, one of the best methods for treating non-stiff general-form initial value problems for ODE. The
integration is done in the interval [tn−1, tn] with the initial conditions: x̂(tn−1) = x̂n−1/n−1 and the
error covariance matrix P(tn−1) = Pn−1/n−1. We compute the predicted estimate state x̂n/n−1 = x̂(tn)

and the error covariance matrix Pn/n−1 = P(tn) at time tn [37]. Then, we use the standard correction
step of the EKF. Additionally, we calculate only the upper triangular part of the error covariance matrix
including the main diagonal because of its symmetry. As a result, we have 44 equations (ODE) to solve
with 44 unknown variables. Then the standard measurement update is applied at time (tn = nTs). The
function h deriving the observation equation is given by:

h(x, ibat) = Voc(x3) + x1 + x2 + x8 · ibat (22)

The observation matrix H can be calculated by:

H(x) =
∂h
∂x

(x, ibat) = [1 1 h3(x3) 0 0 0 0 ibat] (23a)

where,

h3(x3) =
∂Voc

∂x3
(x3) = av · bv · exp(bv · x3) + cv · dv · exp(dv · x3) (23b)
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The Kalman gain can be computed as:

Kn = Pn/n−1 · H(x̂n/n−1)
T · Sn

−1 (24a)

Sn = H(x̂n/n−1) · Pn/n−1 · H(x̂n/n−1)
T + R (24b)

where R is the measurement noise covariance. As presented in Reference [39], Auger et al. proposed
that the value of covariance R can be set to one (R = 1). The state estimation covariance is updated by:

Pn/n = (1 − Kn · H(x̂n/n−1)) · Pn/n−1 (25)

We use the Kalman gain to update the state estimation:

x̂n/n = x̂n/n−1 + Kn · (U(n · Ts)− h(x̂n/n−1, i(n · Ts)) (26)

Lastly, the process repeats itself.

9. EKF Estimator Results and Discussion

9.1. Validation using the EBM Model

Firstly, we compared the voltage estimated by the EKF with the voltage output of the EBM model,
based on the same current. The battery is discharged with a current of 1.2 A (600 s on-time and 600 s
off-time) as shown in Figure 12a. This Figure shows the voltages obtained with EKF and EBM. The
voltage error is lower than 0.02% as shown in Figure 12b.
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fluctuation in resistance ܴ଴, but it seems to be low.  

These resistances vary slightly for a SOC interval of 30–100%; conversely, capacitances vary 
considerably with SOC. These hypothetical observations can be confirmed by experimental results.  

Figure 12. Extended battery model (EBM) and extended Kalman filter (EKF) voltages for 1.2 A current
profile (a) voltages and current, (b) voltage error.

Figure 13 compares the battery parameters for the EBM with the EKF-estimated parameters
(u1, u2, SOC, τ1, C1, τ2, C2, R1, R2 and R0). It is observed that the estimator can accurately identify the
battery parameters of the model. For Figure 13a,c,d, the output curves obtained with EKF and EBM
are virtually identical and so are superimposed in the graphs.

These estimated parameters vary with time due to their variation with SOC. The main
observations concern the resistances which do not vary significantly with time. There is some
fluctuation in resistance R0, but it seems to be low.

These resistances vary slightly for a SOC interval of 30–100%; conversely, capacitances vary
considerably with SOC. These hypothetical observations can be confirmed by experimental results.
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Figure 13. Comparison of EBM and EKF results for the 1.2 A current profile (a) plot of u1, u2 and SOC,
(b) resistances R1, R2 and R0 (c) time constants τ1 and τ2 (d) capacitances C1 and C2.

9.2. Validation using Experimental Signals

To validate the EKF observer, we used the same current profile shown previously in Figure 12a.
The battery voltage over time was measured experimentally and compared with the voltage estimated
by the CD-EKF estimator. As seen in Figure 14, the voltage with CD-EKF converges with the
experimental data, and the error between these voltages is very low (on the order of 2 mV).
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Figure 14. Experimental and EKF voltages for the 1.2 A current profile (a) voltages and current,
(b) voltage error.

Figure 15 shows the variation of parameters with time. The parameters of the EKF estimator
are initialized with values slightly different from the true ones. The estimated drop voltages u1 and
u2 are compared with values obtained using the EBM, as presented in Figure 15a. The first voltage
drop is close to the value obtained with the EBM, but the voltage drop u2 is greater than u1, yet it can
be influenced by different coefficients, such as temperature. This can lead to errors determining the
concentration parameters (R2 and C2), particularly at the beginning of discharge.
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The values for resistance and the capacitance estimated by CD-EKF are compared with those
calculated by theoretical Equations (9) and (10) using the SOC value obtained by the estimator. These
results are shown in Figure 15a–d. The temporal change of the estimated parameters matches the
calculations closely.

The main difficulties when determining these parameters usually reside at the beginning and the
end of discharge. For this CD-EKF estimator, minor errors occur, especially at low SOC. It is found
that the relative error of the estimated parameters oscillates around the zero value. Maximum error is
presented in Table 2.

Table 2. Maximum relative errors of estimated parameters.

Parameter Error

∆τ1 1%
∆C1 0.9%
∆τ2 5%
∆C2 4%
∆R1 5%
∆R2 6%
∆R0 8%

The SOC results estimated with EKF and AHC are compared in Figure 15a. The SOC with EKF
converges to the value with AHC with error lower than 1% as shown in Figure 16.
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10. Conclusions

In this paper, we propose an extended model to simplify the characterisation of battery parameters
(state of charge, resistances and capacitances). This lithium-ion battery model relies on iterative
measures of voltage and current as well as estimations from a continuous-discrete extended Kalman
filter. We employed the pulse discharge method and fitting technique to determine battery parameters
and to validate the model experimentally.

The model, established in the MATLAB environment, takes into account the effect of the discharge
rate on battery parameters, and simulates the dynamic voltage behaviours of the battery well. It
satisfies a trade-off between complexity and precision. However, at the end of discharge, the model
becomes less precise because of increasing superposed errors and electrochemical phenomena that
may take place at low voltage. For more stable estimates of the state of charge, further research can be
performed to determine the time constants.

Although the model adjusts for Coulombic efficiency variation, temperature can have a substantial
effect on battery behaviour and needs to be analysed more deeply.

We have developed a CD-EKF estimator based on the battery model we first derived, using
an EKF observer to update parameters for ongoing, iterative input to the model. One of the great
advantages of using the observer is the ability to recover from incorrect initial conditions.

Experimental results indicate that this revised CD-EKF estimator can accurately determine battery
parameters throughout most of the discharge cycle. In further study, we are currently working to
apply the developed estimator in real time measurements with another battery.

The estimator uses only a few equations, and should not require significant computing resources.
The developed estimator can be used in various applications such as laptops, telephones and electric
vehicles. We are also considering using extended Kalman filters to create an online tool for estimating
the state of health of batteries online.
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Appendix A

Table A1. Battery nominal parameters.

Parameter Value

Nominal voltage (V) 3.7
Weight (g) 44

Capacity (Ah) 2.15
Minimum discharge end voltage (V) 2.90

Maximum charge voltage (V) 4.20
Internal impedance (mΩ) at 1 kHz 150

Table A2. Experimental constants.

Parameter Value

av 3.60
bv −0.117
cv −0.524
dv −26.3
ar1 0.046
br1 0.077
cr1 −7.75
ac1 −8.77
bc1 −9.36
cc1 −9.70
ar2 0.110
br2 0.194
cr2 −120
ac2 −23.6
bc2 −24.6
cc2 −5900
dc2 7240
ec2 401

R0 (Ω) 0.257

Table A3. Covariance matrix.

Parameter Value

P110 4 × 10−5

P220 1.2 × 10−3

P330 3 × 10−4

P440 0.8 × 10−4

P550 0.2 × 10−6

P660 17 × 10−6

P770 3.4 × 10−7

P880 0.104
q1 1.3 × 10−3

q2 4.1 × 10−2

q3 1.55 × 10−3

q4 2.52 × 10−5

q5 0.9 × 10−7

q6 4.4 × 10−7

q7 1 × 10−9

q8 0.95 × 10−3
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Appendix B

The electrical circuit of the battery, represented in Figure 1, can be expressed by the Equations (A1)–(A3).

du1
dt

= − 1
τ1

· u1 +
1

C1
· ibat (A1)

du2
dt

= − 1
τ2

· V2 +
1

C2
· ibat (A2)

d
dt

SOC = η(ibat) ·
1
Q

· ibat (A3)

dτ1
dx3

(x3) =
dR1
dx3

(x3) ·
1
x5

+
x5
x4

· dC1
dx3

(x3) (A4)

d2τ1

dx3
2 (x3) =

d2R1

dx3
2 (x3) ·

1
x5

+ 2 × dR1
dx3

(x3) ·
dC1
dx3

(x3) +
x5
x4

· d2C1

dx3
2 (x3) (A5)

d2R1

dx3
2 (x3) = br1 · cr1

2 · exp(cr1 · x3) (A6)

d2C1

dx3
2 (x3) = 2 × ac1 (A7)

dτ2
dx3

(x3) =
dR2
dx3

(x3) ·
1
x7

+
x7
x6

· dC2
dx3

(x3) (A8)

d2τ2

dx3
2 (x3) =

d2R2

dx3
2 (x3) ·

1
x7

+ 2 × dR2
dx3

(x3) ·
dC2
dx3

(x3) +
x7
x6

· d2C2

dx3
2 (x3) (A9)

d2R2

dx3
2 (x3) = br2 · cr2

2 · exp(cr2 · x3) (A10)

d2C2

dx3
2 (x3) = 12 × ac2 · x3

2 + 6 × bc2 · x3 + 2 × cc2 (A11)

References

1. Andre, D.; Meiler, M.; Steiner, K.; Wimmer, C.; Soczka-Guth, T.; Sauer, D.U. Characterization of
high-power lithium-ion batteries by electrochemical impedance spectroscopy. I: Experimental investigation.
J. Power Sources 2011, 196, 5334–5341. [CrossRef]

2. Andre, D.; Meiler, M.; Steiner, K.; Walz, H.; Soczka-Guth, T.; Sauer, D.U. Characterization of high-power
lithium-ion batteries by electrochemical impedance spectroscopy. II: Modelling. J. Power Sources 2011, 196,
5349–5356. [CrossRef]

3. Smith, K.A.; Rahn, C.D.; Wang, C.-Y. Model-based electrochemical estimation and constraint management
for pulse operation of lithium ion batteries. IEEE Trans. Control Syst. Technol. 2010, 18, 654–663. [CrossRef]

4. Bhangu, B.S.; Bentley, P.; Stone, D.A.; Bingham, C.M. Nonlinear observers for predicting state-of-charge and
state-of-health of lead-acid batteries for hybrid-electric vehicles. IEEE Trans. Veh. Technol. 2005, 54, 783–794.
[CrossRef]

5. Subburaj, A.S.; Bayne, S.B. Analysis of dual polarization battery model for grid applications. In Proceedings
of the IEEE 36th International Telecommunications Energy Conference (INTELEC), Vancouver, BC, Canada,
28 September–2 October 2014; pp. 1–7.

6. Chen, M.; Rincon-Mora, G.A. Accurate electrical battery model capable of predicting runtime and IV
performance. IEEE Trans. Energy Convers. 2006, 21, 504–511. [CrossRef]

7. Piller, S.; Perrin, M.; Jossen, A. Methods for state-of-charge determination and their applications.
J. Power Sources 2001, 96, 113–120. [CrossRef]

8. Einhorn, M.; Conte, V.; Kral, C.; Fleig, J. Comparison of electrical battery models using a numerically
optimized parameterization method. In Proceedings of the IEEE Vehicle Power and Propulsion Conference
(VPPC), Chicago, IL, USA, 6–9 September 2011; pp. 1–7.

http://dx.doi.org/10.1016/j.jpowsour.2010.12.102
http://dx.doi.org/10.1016/j.jpowsour.2010.07.071
http://dx.doi.org/10.1109/TCST.2009.2027023
http://dx.doi.org/10.1109/TVT.2004.842461
http://dx.doi.org/10.1109/TEC.2006.874229
http://dx.doi.org/10.1016/S0378-7753(01)00560-2


Energies 2017, 10, 1075 18 of 19

9. Spotnitz, R. Simulation of capacity fade in lithium-ion batteries. J. Power Sources 2003, 113, 72–80. [CrossRef]
10. Pop, V.; Bergveld, H.J.; Danilov, D.; Regtien, P.P.; Notten, P.H. Battery Management Systems: Accurate

State-of-Charge Indication for Battery-Powered Applications; Springer Science & Business Media: Berlin,
Germany, 2008.

11. Xiong, R.; He, H.; Sun, F.; Zhao, K. Online estimation of peak power capability of Li-ion batteries in electric
vehicles by a hardware-in-loop approach. Energies 2012, 5, 1455–1469. [CrossRef]

12. Xiong, R.; Gong, X.; Mi, C.C.; Sun, F. A robust state-of-charge estimator for multiple types of lithium-ion
batteries using adaptive extended Kalman filter. J. Power Sources 2013, 243, 805–816. [CrossRef]

13. Hu, C.; Youn, B.D.; Chung, J. A multiscale framework with extended Kalman filter for lithium-ion battery
SOC and capacity estimation. Appl. Energy 2012, 92, 694–704. [CrossRef]

14. Chen, Z.; Qiu, S.; Masrur, M.A.; Murphey, Y.L. Battery state of charge estimation based on a combined model
of Extended Kalman Filter and neural networks. In Proceedings of the 2011 International Joint Conference
on Neural Networks (IJCNN), San Jose, CA, USA, 31 July–5 August 2011; pp. 2156–2163.

15. Andre, D.; Nuhic, A.; Soczka-Guth, T.; Sauer, D.U. Comparative study of a structured neural network and an
extended Kalman filter for state of health determination of lithium-ion batteries in hybrid electricvehicles.
Eng. Appl. Artif. Intell. 2013, 26, 951–961. [CrossRef]

16. Särkkä, S.; Sarmavuori, J. Gaussian filtering and smoothing for continuous-discrete dynamic systems. Signal
Process. 2013, 93, 500–510. [CrossRef]

17. Kulikov, G.Y.; Kulikova, M.V. High-order accurate continuous-discrete extended Kalman filter for chemical
engineering. Eur. J. Control 2015, 21, 14–26. [CrossRef]

18. Hua, Y.; Xu, M.; Li, M.; Ma, C.; Zhao, C. Estimation of state of charge for two types of Lithium-Ion batteries
by nonlinear predictive filter for electric vehicles. Energies 2015, 8, 3556–3577. [CrossRef]

19. Kim, T.; Qiao, W. A hybrid battery model capable of capturing dynamic circuit characteristics and nonlinear
capacity effects. IEEE Trans. Energy Convers. 2011, 26, 1172–1180. [CrossRef]

20. Nikolian, A.; Firouz, Y.; Gopalakrishnan, R.; Timmermans, J.M.; Omar, N.; van den Bossche, P.; van Mierlo, J.
Lithium ion batteries—Development of advanced electrical equivalent circuit models for nickel manganese
cobalt lithium-ion. Energies 2016, 9, 360. [CrossRef]

21. He, H.; Zhang, X.; Xiong, R.; Xu, Y.; Guo, H. Online model-based estimation of state-of-charge and
open-circuit voltage of lithium-ion batteries in electric vehicles. Energy 2012, 39, 310–318. [CrossRef]

22. Panasonic DataSheet. Available online: http://www.alldatasheet.com/datasheet-pdf/pdf/219494/
PANASONIC/CGR18650CF.html (accessed on 11 May 2017).

23. He, H.; Xiong, R.; Fan, J. Evaluation of lithium-ion battery equivalent circuit models for state of charge
estimation by an experimental approach. Energies 2011, 4, 582–598. [CrossRef]

24. Feng, F.; Lu, R.; Zhu, C. A combined state of charge estimation method for lithium-ion batteries used in a
wide ambient temperature range. Energies 2014, 7, 3004–3032. [CrossRef]

25. Garche, J.; Dyer, C.K.; Moseley, P.T.; Ogumi, Z.; Rand, D.A.; Scrosati, B. Encyclopedia of Electrochemical Power
Sources; Newnes: Sydney, Australia, 2013.

26. Jiang, J.; Liu, Q.; Zhang, C.; Zhang, W. Evaluation of acceptable charging current of power Li-ion batteries
based on polarization characteristics. IEEE Trans. Ind. Electron. 2014, 61, 6844–6851. [CrossRef]

27. Chun, C.Y.; Seo, G.-S.; Yoon, S.H.; Cho, B.-H. State-of-charge estimation for lithium-ion battery pack
using reconstructed open-circuit-voltage curve. In Proceedings of the 2014 International Power Electronics
Conference (IPEC-Hiroshima 2014-ECCE-ASIA), Hiroshima, Japan, 18–21 May 2014; pp. 2272–2276.

28. Xu, J.; Mi, C.C.; Cao, B.; Deng, J.; Chen, Z.; Li, S. The state of charge estimation of lithium-ion batteries based
on a proportional-integral observer. IEEE Trans. Veh. Technol. 2014, 63, 1614–1621.

29. Yao, L.W.; Aziz, J.A. Modeling of Lithium Ion battery with nonlinear transfer resistance. In Proceedings
of the IEEE Applied Power Electronics Colloquium (IAPEC), Johor Bahru, Malaysia, 18–19 April 2011;
pp. 104–109.

30. Kim, J.H.; Lee, S.J.; Kim, E.S.; Kim, S.K.; Kim, C.H.; Prikler, L. Modeling of battery for EV using EMTP/ATP
draw. J. Electr. Eng. Technol. 2014, 9, 98–105. [CrossRef]

31. Diab, Y.; AbouKair, M. Electric Energy Storage; Damascus University: Damascus, Syria, 2014; pp. 131–133.
32. Kim, J.; Shin, J.; Chun, C.; Cho, B.H. Stable configuration of a Li-ion series battery pack based on a screening

process for improved voltage/SOC balancing. IEEE Trans. Power Electron. 2012, 27, 411–424. [CrossRef]

http://dx.doi.org/10.1016/S0378-7753(02)00490-1
http://dx.doi.org/10.3390/en5051455
http://dx.doi.org/10.1016/j.jpowsour.2013.06.076
http://dx.doi.org/10.1016/j.apenergy.2011.08.002
http://dx.doi.org/10.1016/j.engappai.2012.09.013
http://dx.doi.org/10.1016/j.sigpro.2012.09.002
http://dx.doi.org/10.1016/j.ejcon.2014.11.003
http://dx.doi.org/10.3390/en8053556
http://dx.doi.org/10.1109/TEC.2011.2167014
http://dx.doi.org/10.3390/en9050360
http://dx.doi.org/10.1016/j.energy.2012.01.009
http://www.alldatasheet.com/datasheet-pdf/pdf/219494/PANASONIC/CGR18650CF.html
http://www.alldatasheet.com/datasheet-pdf/pdf/219494/PANASONIC/CGR18650CF.html
http://dx.doi.org/10.3390/en4040582
http://dx.doi.org/10.3390/en7053004
http://dx.doi.org/10.1109/TIE.2014.2320219
http://dx.doi.org/10.5370/JEET.2014.9.1.098
http://dx.doi.org/10.1109/TPEL.2011.2158553


Energies 2017, 10, 1075 19 of 19

33. Charkhgard, M.; Zarif, M.H. Design of adaptive H∞ filter for implementing on state-of-charge estimation
based on battery state-of-charge-varying modelling. IET Power Electron. 2015, 8, 1825–1833. [CrossRef]

34. Xiong, R.; He, H.; Sun, F.; Zhao, K. Evaluation on state of charge estimation of batteries with adaptive
extended Kalman filter by experiment approach. IEEE Trans. Veh. Technol. 2013, 62, 108–117. [CrossRef]

35. He, H.; Xiong, R.; Zhang, X.; Sun, F.; Fan, J. State-of-charge estimation of the lithium-ion battery using an
adaptive extended Kalman filter based on an improved Thevenin model. IEEE Trans. Veh. Technol. 2011, 60,
1461–1469.

36. Zhang, C.P.; Liu, J.Z.; Sharkh, S.M.; Zhang, C.N. Identification of Dynamic Model Parameters for
Lithium-Ion Batteries used in Hybrid Electric Vehicles. Available online: https://eprints.soton.ac.uk/
73265/1/Identification_of_Dynamic_Model_Parameters_for.pdf (accessed on 24 July 2017).

37. Kulikov, G.Y.; Kulikova, M.V. Accurate numerical implementation of the continuous-discrete extended
Kalman filter. IEEE Trans. Autom. Control 2014, 59, 273–279. [CrossRef]

38. Axelsson, P.; Gustafsson, F. Discrete-time solutions to the continuous-time differential Lyapunov equation
with applications to Kalman filtering. IEEE Trans. Autom. Control 2015, 60, 632–643. [CrossRef]

39. Auger, F.; Hilairet, M.; Guerrero, J.M.; Monmasson, E.; Orlowska-Kowalska, T.; Katsura, S. Industrial
applications of the Kalman filter: A review. IEEE Trans. Ind. Electron. 2013, 60, 5458–5471. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1049/iet-pel.2014.0523
http://dx.doi.org/10.1109/TVT.2012.2222684
https://eprints.soton.ac.uk/73265/1/Identification_of_Dynamic_Model_Parameters_for.pdf
https://eprints.soton.ac.uk/73265/1/Identification_of_Dynamic_Model_Parameters_for.pdf
http://dx.doi.org/10.1109/TAC.2013.2272136
http://dx.doi.org/10.1109/TAC.2014.2353112
http://dx.doi.org/10.1109/TIE.2012.2236994
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Dynamical Model of Battery 
	Studied Battery and Experimental Device 
	Determining Open-Circuit Voltage as a Function of SOC 
	Identification of Model Parameters as a Function of SOC 
	Determining the Battery Coulombic Efficiency 
	Comparison between Simulation and Experimental Results 
	Estimating Battery Parameters Using an Extended Kalman Filter 
	EKF Estimator Results and Discussion 
	Validation using the EBM Model 
	Validation using Experimental Signals 

	Conclusions 
	
	

